Teaching Science with Technology: Case Studies of Science Teachers’ Development of Technology, Pedagogy, and Content Knowledge
نویسندگان
چکیده
This study examines the development of technology, pedagogy, and content knowledge (TPACK) in four in-service secondary science teachers as they participated in a professional development program focusing on technology integration into K-12 classrooms to support science as inquiry teaching. In the program, probeware, mind-mapping tools (CMaps), and Internet applications ― computer simulations, digital images, and movies — were introduced to the science teachers. A descriptive multicase study design was employed to track teachers’ development over the yearlong program. Data included interviews, surveys, classroom observations, teachers’ technology integration plans, and action research study reports. The program was found to have positive impacts to varying degrees on teachers’ development of TPACK. Contextual factors and teachers’ pedagogical reasoning affected teachers’ ability to enact in their classrooms what they learned in the program. Suggestions for designing effective professional development programs to improve science teachers’ TPACK are discussed. Contemporary Issues in Technology and Teacher Education, 9(1) 26 Science teaching is such a complex, dynamic profession that it is difficult for a teacher to stay up-to-date. For a teacher to grow professionally and become better as a teacher of science, a special, continuous effort is required (Showalter, 1984, p. 21). To better prepare students for the science and technology of the 21st century, the current science education reforms ask science teachers to integrate technology and inquiry-based teaching into their instruction (American Association for the Advancement of Science, 1993; National Research Council [NRC], 1996, 2000). The National Science Education Standards (NSES) define inquiry as “the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work” (NRC, 1996, p. 23). The NSES encourage teachers to apply “a variety of technologies, such as hand tools, measuring instruments, and calculators [as] an integral component of scientific investigations” to support student inquiry (p.175). Utilizing technology tools in inquiry-based science classrooms allows students to work as scientists (Novak & Krajcik, 2006, p. 76). Teaching science as emphasized in the reform documents, however, is not easy. Science teachers experience various constraints, such as lack of time, equipment, pedagogical content knowledge, and pedagogical skills in implementing reform-based teaching strategies (Crawford, 1999, 2000; Roehrig & Luft, 2004, 2006). One way to overcome the barriers and to reform teaching is to participate in professional development programs that provide opportunities for social, personal, and professional development (Bell & Gilbert, 2004). Professional development programs in which teachers collaborate with other teachers, reflect on their classroom practices, and receive support and feedback have been shown to foster teachers’ professional development (Grossman, Wineburg, & Woolworth, 2001; Huffman, 2006; Loucks-Horsley, Love, Stiles, Mundry, & Hewson, 2003). In this light, the professional development program, Technology Enhanced Communities (TEC), which is presented in this paper, was designed to create a learning community where science teachers can learn to integrate technology into their teaching to support student inquiry. TEC has drawn heavily on situated learning theory, which defines learning as situated, social, and distributed (Brown, Collins, & Duguid, 1989; Lave & Wenger, 1991; Putnam & Borko, 2000). Since a situated learning environment supports collaboration among participants (Brown et al., 1989; Lave & Wenger, 1991; Putnam & Borko, 2000), and the collaboration among teachers enhances teacher learning (CochranSmith & Lytle, 1999; Krajcik, Blumenfeld, Marx, & Soloway, 1994; Little, 1990), TEC was designed to provide teachers with opportunities to build a community that enables learning and is distributed among teachers. The situated learning theory was used as a design framework for TEC, but technology, pedagogy, and content knowledge (TPACK) was employed as a theoretical framework for the present study. Since the concept of TPACK has emerged recently, there has been no consensus on the nature and development of TPACK among researchers and teacher educators. As suggested by many authors in the Handbook of Technological Pedagogical Content Knowledge (AACTE Committee on Innovation and Technology, 2008), more research needs to examine the role of teacher preparation programs teachers’ beliefs (Niess, 2008), and specific student and school contexts (McCrory, 2008) regarding the nature and development of TPACK. Thus, this study was conducted to investigate the effects of an in-service teacher education program (TEC) on science teachers’ development of Contemporary Issues in Technology and Teacher Education, 9(1) 27 TPACK. The research question guiding this study was: How does the professional development program, TEC, enhance science teachers’ TPACK? Review of the Relevant Literature Technology Integration Into Science Classrooms Educational technology tools such as computers, probeware, data collection and analysis software, digital microscopes, hypermedia/multimedia, student response systems, and interactive white boards can help students actively engage in the acquisition of scientific knowledge and development of the nature of science and inquiry. When educational technology tools are used appropriately and effectively in science classrooms, students actively engage in their knowledge construction and improve their thinking and problem solving skills (Trowbridge, Bybee, & Powell, 2008). Many new educational technology tools are now available for science teachers. However, integrating technology into instruction is still challenging for most teachers (Norris, Sullivan, Poirot, & Soloway, 2003; Office of Technology Assessment [OTA], 1995). The existing studies demonstrate that technology integration is a long-term process requiring commitment (Doering, Hughes, & Huffman, 2003; Hughes, Kerr, & Ooms, 2005; Sandholtz, Ringstaff, & Dwyer, 1997). Teachers need ongoing support while they make efforts to develop and sustain effective technology integration. Professional learning communities, where teachers collaborate with other teachers to improve and support their learning and teaching, are effective for incorporating technology into teaching (Krajcik et al., 1994; Little, 1990). As a part of a community, teachers share their knowledge, practices, and experiences; discuss issues related to student learning; and critique and support each others’ knowledge and pedagogical growth while they are learning about new technologies (Hughes et al., 2005). Technology integration is most commonly associated with professional development opportunities. The need for participant-driven professional development programs in which teachers engage in inquiry and reflect on their practices to improve their learning about technology has been emphasized by many researchers (Loucks-Horsley et al., 2003; Zeichner, 2003). Zeichner, for example, argued that teacher action research is an important aspect of effective professional development. According to Zeichner, to improve their learning and practices, teachers should become teacher researchers, conduct self-study research, and engage in teacher research groups. These collaborative groups provide teachers with support and opportunities to deeply analyze their learning and practices. Pedagogical Content Knowledge Shulman (1987) defined seven knowledge bases for teachers: content knowledge, general pedagogical knowledge, curriculum knowledge, pedagogical content knowledge (PCK), knowledge of learners and their characteristics, knowledge of educational context, and knowledge of educational ends, goals, and values. According to Shulman, among these knowledge bases, PCK plays the most important role in effective teaching. He argued that teachers should develop PCK, which is “the particular form of content knowledge that embodies the aspects of content most germane to its teachability” (Shulman, 1986, p. 9). PCK is not only a special form of content knowledge but also a “blending of content and pedagogy into an understanding of how particular topics, problems, or issues are Contemporary Issues in Technology and Teacher Education, 9(1) 28 organized, presented, and adapted to the diverse interests and abilities of learners, and presented for instruction” (Shulman, 1987, p. 8). Shulman argued that teachers not only need to know their content but also need to know how to present it effectively. Good teaching “begins with an act of reason, continues with a process of reasoning, culminates in performances of imparting, eliciting, involving, or enticing, and is then thought about some more until the process begins again” (Shulman, 1987, p. 13). Thus, to make effective pedagogical decisions about what to teach and how to teach it, teachers should develop both their PCK and pedagogical reasoning skills. Since Shulman’s initial conceptualization of PCK, researchers have developed new forms and components of PCK (e.g., Cochran, DeRuiter, & King, 1993; Grossman, 1990; Marks, 1990; Magnusson, Borko, & Krajcik, 1994; Tamir, 1988). Some researchers while following Shulman’s original classification have added new components (Grossman, 1990; Marks 1990; Fernandez-Balboa & Stiehl, 1995), while others have developed different conceptions of PCK and argued about the blurry borders between PCK and content knowledge (Cochran et al., 1993). Building on Shulman’s groundbreaking work, these researchers have generated a myriad of versions of PCK. In a recent review of the PCK literature, Lee, Brown, Luft, and Roehrig (2007) identified a consensus among researchers on the following two components of PCK: (a) teachers’ knowledge of student learning to translate and transform content to facilitate students’ understanding and (b) teachers’ knowledge of particular teaching strategies and representations (e.g., examples, explanations, analogies, and illustrations). The first component, knowledge of student learning and conceptions, includes the following elements: students’ prior knowledge, variations in students’ approaches to learning, and students’ misconceptions. This component of PCK refers to teachers’ knowledge and understanding about students’ learning and their ideas about a particular area or topic. This type of knowledge also refers to teachers’ understanding of variations in students’ different approaches to learning. The second component refers to teachers’ knowledge of specific instructional strategies and representations that can be helpful for students to understand new concepts.
منابع مشابه
Computer Science Teachers' In-service Training Needs and Their Technological Pedagogical Content Knowledge
This study examines a national sample of 1127 computer science teachers who teach algorithms and programming in upper secondary education; it measures their knowledge with respect to three key domains as described by the TPACK framework: technology, pedagogy, content, and the combination of these areas. According to the results in the TPACK subscales, teachers state that their knowledge is betw...
متن کاملA Qualitative Approach to Assessing Technological Pedagogical Content Knowledge
Because technological pedagogical content knowledge is becoming an increasingly important construct in the field of teacher education, there is a need for assessment mechanisms that capture teachers’ development of this portion of the knowledge base for teaching. The paper describes a proposal drawing on qualitative data produced during lesson study cycles to assess teachers’ development of tec...
متن کاملTeachers’ Technological Pedagogical Content Knowledge and Learning Activity Types: Curriculum-based Technology Integration Reframed
In this paper we critically analyze extant approaches to technology integration in teaching, arguing that many current methods are technocentric, often omitting sufficient consideration of the dynamic and complex relationships among content, technology, pedagogy, and context. We recommend using the technology, pedagogy, and content knowledge (TPACK) framework as a way to think about effective t...
متن کاملTechnology Capacity Building for Preservice Teachers through Methods Courses: Taking Science as an Example
Technology proficiency has widely been considered a necessary quality of school teachers, yet how to help teachers develop this quality remains an unanswered question. While teacher education programs often offer one technology course as a solution to this issue, scholars have recently argued that such technical skill-oriented courses are not sufficient to develop preservice teachers’ ability t...
متن کاملThe Technological Pedagogical Content Knowledge Framework for Teachers and Teacher Educators
describes the type of teacher knowledge required to teach effectively with technology. Describing what teachers need to know can be difficult because teaching is an inherently complex, multifaceted activity which occurs in varied settings. By its nature, teaching is an ill-structured problem requiring reasoning about a wide range of interrelated variables such as the background knowledge that s...
متن کامل